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Université Paris-Est, LIGM (UMR CNRS 8049), ENPC
F-77455 Marne-la-Vallée

Abstract. We propose a novel formulation for parsing facade images
with user-defined shape prior. Contrary to other state-of-the-art meth-
ods, we do not explore the procedural space of shapes derived from
a grammar. Instead we formulate parsing as a linear binary program
which we solve using Dual Decomposition. The algorithm produces plau-
sible approximations of globally optimal segmentations without grammar
sampling. It yields state-of-the-art performance on standard datasets.

1 Introduction

The goal of facade parsing is to segment rectified building images into regions
corresponding to architectural elements, like windows, balconies and doors. The
resulting segments have to satisfy structural constraints, e.g., alignment of win-
dows on the same floor, or requirement that a balcony is associated to a window
and right below it. Applications include creating 3D models of urban scenes.

A common approach to this problem is to let the user specify a shape prior
encoding the structural constraints. It often takes the form of a shape grammar
and proposed algorithms try to find a sequence of instantiated grammar rules
yielding an optimal segmentation [1–3]. But the dimension of the search space
is very large. Consequently, these algorithms suffer from the ‘curse of structural
exploration’. They search the solution space randomly [1, 2], which does not
guarantee optimality or repeatability, or severely subsample the image [3].

In this paper we lift the curse of structural exploration by proposing an
altenative formulation of priors, which can be mapped to a linear binary program
and solved efficiently, yielding state-of-the-art performance on standard datasets.

1.1 Related Work

Most proposed priors that are complex enough to model constraints of building
facades rely on shape grammars [4]. The concept has been introduced by Stiny
et al. [5] in the 70’s, and the idea of representing image contents in a hierarchical
and semantized manner traces back to the work of Ohta et al. [6, 7]. Practical
applications to image segmentation and interpretation are more recent [8–11].

A grammar is typically given by a set of nonterminal symbols N , a set of
terminal symbols T , a start symbol in N , and a set of production rules of the
form A0 → A1 . . . An where A0 ∈N and Ai ∈N ∪T for 1≤ i≤n.
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In the grammar of Han and Zhu [8], terminal symbols are rectangles and
production rules combine them into rows, columns or grids, allowing rectangle
nesting. The authors resort to a greedy algorithm for constructing the parse tree,
which illustrates the difficulty of optimizing over a grammar derivation.

Drawing ideas from architectural modeling [12], where facade generation is
analogous to string derivation in formal languages, the top-down parser of Teboul
et al. [1, 2] is one of the first attempts to parse facades using ‘split grammars’. The
input image is recursively split into rectangular subregions which are assigned
a class label. Spliting directions as well as the number and class of subrectan-
gles are non-deterministically chosen according to a predefined set of production
rules. The process continues until all rectangles have a terminal class. The parser
actually samples a number of possible derivations, exploring only a small part of
the structural space. Even with a ‘smart’ sampling strategy [2], it does not pro-
duce repeatable results: as reported in [13], inference consists in independently
running the exploration five times and keeping the best solution.

To counter the drawbacks of sampling, Riemenschneider et al. [3] propose an
adaptation of the Cocke-Younger-Kasami (CYK) algorithm for parsing string
grammars to two-dimensional split grammars. Its complexity isO(w2h2N), where
w and h are image dimensions and N is the number of possible combinations of
production rule attributes (including splitting positions). This limits practical
applications of the algorithm to grids of about 60 by 60 cells. To circumvent this
limitation the authors test different methods of image subsampling.

An attempt to fight the curse of procedural exploration was proposed by
Koziński and Marlet [14], using graph grammars and MRF optimization. In
contrast to parsers like [2] whose combinatorial search explores both the nature
of splits and their position at the same time, sampling here concerns structure
only; optimal positions for a given sampled structure are found with a principled
and efficient method. The space to explore, which now does not depend on
image size, is considerably smaller, but the curse of the procedural space is not
eliminated completely as graph-grammar sampling remains.

Some facade segmentation methods [15, 16] do not use any user-defined shape
prior. The bottom-up method proposed by Martinovic et al. [15] applies ‘soft’
architectural principles as a postprocessing step after image segmentation, but
cannot accommodate ‘hard’ structural constraints. It can produce artifacts, like
windows extending further than their balconies. A more recent work by Cohen
et al. [16] uses a sequence of dynamic programs to recover a segmentation that
respects a set of hard-coded constraints and attains state-of-the-art performance
on the standard datasets. In our experiments, our method matches the perfor-
mance of this algorithm while offering full flexibility with respect to shape prior
specification.

In this paper we formulate the problem of finding an optimal segmentation as
a binary linear program. We solve this program using the Dual Decomposition
(DD) approach [17, 18]. Similar techniques include Alternating Direction of Mul-
tipliers Method (ADMM) [19]. We chose DD because ADMM, although known
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Table 1. Comparison of with state-of-the-art facade parsing methods.

Property [2] [15] [16] [3] Ours

User-defined shape prior X – – X X
Approximation of global optimum – – –∗ X X
No need of image subsampling (for tractability) X X X – X
Simultaneous alignment in two dimensions X X – X X

* Cohen et al. [16] can issue a certificate of optimality if the found solution is optimal.

to feature better convergence properties, requires solving quadratic subproblems.
The experiments confirm that DD behaves well in our application.

1.2 Contributions

Our approach for image parsing does not suffer from the curse of procedural
exploration. It is based on a shape prior formalism that allows efficient parsing.

Instead of expressing a shape prior using grammar rules, we propose to rep-
resent the structural decomposition of a scene as a hierarchy of classes, comple-
mented by a specification of forbidden configurations of neighboring elements.

The parsing problem can then be turned into a linear binary program, which
we solve efficiently using Dual Decomposition, eliminating the need for a pro-
cedural exploration of the solution space. As shown in the experiment section,
our algorithm features the accuracy of methods using hard-coded structural con-
straints [15, 16] while retaining the flexibility of grammar-based methods [2, 3].
The comparison to state of the art is summarized in table 1.

2 Proposed Model

Although it departs from the grammar-based methods, our approach to struc-
tural segmentation is inspired by the process of hierarchical image subdivision
into rectangular regions, which we will refer to as rectangles in the rest of the
paper. The shape prior consists of a tree of rectangle classes and a specification
of pairwise potentials penalizing unlikely or invalid configurations of adjacent
rectangles. In the tree, child nodes represent classes of rectangles resulting from
splitting a rectangle of a parent class. We require that a rectangle of a class
resulting from a vertical split can only be split horizontally, and vice versa.
Consequently, all non-leaf nodes at a given tree depth are split along the same
direction. Each nonterminal is assigned a table of pairwise potentials penalizing
pairs of child classes assigned to neighboring rectangles. Our algorithm can han-
dle infinite values of the potentials and in our experiments we only use binary
potentials that take the value of zero or infinity, preventing some configurations
of neighbors and allowing the others.

In contrast to split grammars, which are context-free and cannot be used to
express simultaneous alignment in two dimensions (other than with implementa-
tion tricks that introduce some context dependency [2]), we require rectangles of
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Fig. 1. A shape prior consists of a hierarchy of classes (image 1) and a table of pair-
wise potentials for each nonterminal node (not shown here). Each image (2-4) shows
substitution of all rectangles of a particular class with rectangles of child classes.

the same class to be aligned both vertically and horizontally. This requirement
can be enforced by constraining all rectangles of the same class that are aligned
along the splitting direction to be split in the same positions into subrectan-
gles of the same classes. A tree example and corresponding segmentations are
presented in figure 1. Note the bidirectional alignment of windows (class g).

2.1 Optimal Segmentation as a Binary Linear Program

We denote the set of indices of image pixels by I = {(i, j)|i ∈ I, j ∈ J}, I =
{1, . . . , h} and J = {1, . . . , w}, where h is image height and w is image width.
We denote the set of rectangle classes by C = K ∪ L, where K denotes the
set of classes that result from a horizontal split, also called row-classes, and L
is the set of classes that result from a vertical split, called column-classes, and
K∩L = ∅. The root of the tree r is a ‘starting class’, corresponding to the whole
image. Without loss of generality we assume that r is split horizontally and by
convention we consider r ∈ L. We recall that nodes in K can only have children
in L and vice versa. In consequence, all nodes at a given level of the tree are
either col-classes or row-classes. We denote the set of children of class n ∈ C
by Ch(n) and the set of descendants of n, including n, by Desc(n). Similarly,
we denote the set of ancestors of n, including n, by Anc(n), and its parent by
Pa(n). The set of siblings of n is denoted Sib(n). We call t ∈ C corresponding
to the leaves of the tree terminal classes and denote their set by T .

A sequence of vertical and horizontal splits assigns a sequence of rectangle
class labels to every pixel of the image. For any row i, it is thus possible to list
all the classes that are assigned to at least one pixel on the row. Below we show
that a segmentation consistent with a prior of the proposed form can be encoded
in terms of the sets of classes assigned to each image row and column. This row-
and column-based formulation enables global alignment of distant rectangles of
the same class. We define variables yik, yil, xjk, xjl ∈ {0, 1} such that yik = 1 if
k is present in row i and xjl = 1 if l appears in column j. We make a distinction
between the variables encoding assignment of row-classes k ∈ K and column-
classes l ∈ L, because they behave differently for horizontal and vertical splits.

In table 2 we present how the process of shape derivation changes the sets
of row- and column-classes present in image rows and columns, and formulate
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Table 2. Illustration of the splitting process and interpretation of the variables xjl and
yik. The splitting process is just a concept that helps us to introduce our formulation
and not a mode of operation of the proposed algorithm.
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l∈Ch(k) xjl = xjk
∀k ∈ K,∀l ∈ Ch(k), yjl = yjk

H
o
ri

z.
sp

li
ts

C
→
{G
,H
}

D
→
{P
,Q
}

E F

H

H

G

G

P

P

Q

Q

xjC = xjG = xjH
xjD = xjP = xjQ
yiC = yiG + yiH
yiD = yiP + yiQ

∀l ∈ L, ∀k ∈ Ch(l), xjk = xjl
∀l ∈ L,

∑
k∈Ch(l) yik = yil

constraints on yik, yil, xjk and xjl that reflect this behaviour. As shown in the
second row of the table, a vertical split of a rectangle of parent class results in
a number of rectangles of child classes. Because the split is along the vertical
axis, only one child rectangle is going to appear in each image column previously
occupied by the parent. However, all children are going to occur in each image
row where the parent was present. We emphasize that all vertically aligned
rectangles of the same class are split simultaneously along the same lines, so
that the child rectangles are aligned and their classes are consistent along the
splitting axis. The same reasoning applies to horizontal splits.

The corresponding constraints on xjl, xjk, yil and yik are presented in the
third column of table 2. We note that for vertical splits the state of each yil for
l ∈ Ch(k) is determined by yik and that the same holds for horizontal splits,
xjk and xjl, as shown in the fourth column of table 2. We therefore eliminate
the redundant variables xjk and yil. This will result in a formulation where row-
classes are assigned to image rows and col-classes are assigned to image columns.
We combine the two first equations and the two second ones from rows two and
three of the table to get

∀i ∈ I, ∀l ∈ L̊,
∑

k′∈Ch(l)

yik′ = yiPa(l), ∀j ∈ J, ∀k ∈ K̊,
∑

l′∈Ch(k)

xjl′= xjPa(k), (1a)
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where L̊ = L \ (T ∪ {r}) and K̊ = K \ T . We visualize the domain of the
constraints in fig. 2.
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Fig. 2. Visualization of the state of variables yik and xjl for some pixel i, j. The white
nodes correspond to classes k and l for which yik = 1 and xjl = 1. The gray nodes
correspond to classes with yik = 0 or xjl = 0. The domains of constraints (1) on yik
are circled in blue and the domains of constraints on xjl are circled in red. Left: the
domains of (1b). Middle and right: the domains of (1a). Note that only one leaf is
connected to the root by a path of white nodes. This illustrates the uniqueness of pixel
class given the state of variables corresponding to its row and column.

In the interest of maintaining the convention of assigning row-classes k ∈ K
to rows and column-classes l ∈ L to columns, we modify the constraint from the
first row of the table. We require that the root class is assigned to each column
and that the first horizontal split assigns a unique class to each row:

∀j ∈ J, xjr = 1 , ∀i ∈ I,
∑

k∈Ch(r)

yik= 1 . (1b)

From table 2 it is evident that at each stage of the splitting process each pixel
is assigned a unique class. Below we show that constraints (1) also capture this
property and that the class assigned to pixel (i, j) is unambiguously determined
by vectors (yik) for given i and (xjl) for a fixed j.

Lemma 1. Consider a hierarchy of classes given as a tree, as defined earlier.
Denote the depth of the tree by M , the set of column-classes at the m-th level of
the tree by Lm and the set of row-classes at the m-th level of the tree by Km. Note
that Lm is nonempty only for even m and Km for odd m. Denote the vectors of
yik and xjl by y and x. Denote the set of y and x satisfying constraint (1) by
Ch. Then

(y,x) ∈ Ch =⇒ ∀(i, j) ∈ I ∀m ∈ {0, . . . ,M},
∃!lmj ∈ Lm : ∀n ∈ Anc(lmj ), (xjn = 1) ∨ (yin = 1) if m is even (2)

∃!kmi ∈ Km: ∀n ∈ Anc(kmi ), (xjn = 1) ∨ (yin = 1) if m is odd . (3)

In words, for any pixel (i, j) ∈ I, for any values of variables yik and xjl, that
satisfy constraints (1), at any depth of the tree there exists exactly one row-
class, or one column-class such that the variables xjl and yik corresponding to
the class and all its ancestors are equal to one.
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Proof. We prove the lemma by induction on the depth of the tree.
The root r is the only node at depth m = 0 of the tree and, by constraint

(1b), it holds that xjr = 1 for all j ∈ J . Therefore the lemma holds for m = 0.
For depth m = 1 the tree is formed of the root and its children. By constraints

(1b), we have that for each i there exists a single ki ∈ Ch(r) such that yiki = 1
and yik = 0 for k 6= ki. This proves the lemma for the case of a tree of depth 1.

Assume lemma 1 holds at depth m. If the m is even, then by assumption for
each j we have a single lmj such that the variables associated to all its ancestors
are equal one. By constraint (1a), exactly one child of lmj will have its associated
variable yikmi equal to one. Similar reasoning applies to odd levels of the tree. ut

We model the assignment of terminal classes to pixels by variables zijt ∈
{0, 1}, where zijt = 1 if pixel (i, j) is of class t ∈ T and zijt = 0 otherwise. A
single terminal class has to be assigned to each pixel

∀(i, j) ∈ I,
∑
t∈T

zijt = 1 . (4)

By lemma 1, all ancestors of the class assigned to pixel (i, j) have the variables
yik and xjl equal to one, which leads to the inequalities

∀(i, j) ∈ I,∀k ∈ K,
∑

t∈Desc(k)

zijt ≤ yik, ∀(i, j) ∈ I,∀l ∈ L,
∑

t∈Desc(l)

zijt ≤ xjl. (5)

Each nonterminal class has a table of pairwise potentials defined on its chil-
dren. The potentials determine the likelihood of observing neighboring rectangles
of the child classes. We implement the potentials with variables yikk′ and xjll′

∀i ∈ {1, . . . , h− 1},∀k ∈ K
∑

k′∈Sib(k)

yikk′ = yik , (6a)

∀i ∈ {1, . . . , h− 1},∀k′ ∈ K
∑

k∈Sib(k′)

yikk′ = yi+1k′ , (6b)

∀j ∈ {1, . . . , w − 1},∀l ∈ L
∑

l′∈Sib(l)

xjll′ = xjl , (6c)

∀j ∈ {1, . . . , w − 1},∀l′ ∈ L
∑

l∈Sib(l′)

xjll′ = xj+1l′ . (6d)

We denote the cost of assigning type t to pixel (i, j) by cijt, and the pairwise
cost for column- and row-classes by ckk′ and cll′ . We define the sets of pairs of
row- and column-classes that are siblings in the tree by Iiblings and Jiblings.
The segmentation task can be formulated as minimizing the following objective

E =
∑

(i,j)∈I

∑
t∈T

zijtcijt +

h−1∑
i=1

∑
(k,k′)∈SK

yikk′ckk′ +

w−1∑
j=1

∑
(l,l′)∈SL

xjll′cll′ (7)

subject to constraints (4) to (6).
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Algorithm 1 Dual Decomposition

∀mλ0
m ← 0, n← 1

while not converged do
∀m x̂nm ← arg minEm(xm) + (λn−1

m )ᵀxm
∀m λn

m ← λn−1
m + αn(x̂nm − 1

m

∑
m x̂nm)

n← n+ 1
end while
x̂← GetFinalX(x̂m, λm)

3 Inference

The formulated problem is linear and has a large number of binary variables. We
relax the binary domain constraint and let the variables take values within the
range [0, 1]. We apply dual decomposition to the resulting continuous problem.

3.1 The Dual Decomposition Algorithm

The dual decomposition algorithm is based on the idea of decomposing a diffi-
cult problem into a number of ‘slave’ subproblems that are easy to solve. Given
an original problem x̂ = arg min

∑
mEm(x), x ∈ C, where C is a feasible set,

we construct a number of copies of the variable x, denoted xm, and couple
them by means of a new constraint xm = x. We formulate the dual problem
maxλm

minx,xm

∑
m (Em(xm) + λᵀm(x− xm)), subject to xm ∈ C, where λm is

a vector of Lagrange multipliers. The problem is solved using a projected sub-
gradient algorithm. Calculating the subgradient of the dual objective requires
solving x̂m = arg minEm(xm) + λᵀmxm, subject to xm ∈ C, separately for each
m. The latter minimizations are called slave problems. We present Dual Decom-
position in algorithm 1 and refer the reader to [17, 18] for a detailed derivation.
We denote the values of variables in iteration n by a superscript and the stepsize
by α. The algorithm is run with decaying step size. The values of x̂m eventually
converge and heuristics, represented in algorithm 1 by procedure GetFinalX,
can be used to decide on the components of x̂ on which x̂m disagree [17].

The main design decision to be made when applying dual decomposition is
how to decompose the original objective function into slave objectives. The main
criterion is the ability to efficiently solve the slave problems. Below we present
a decomposition of the objective (7) into subproblems that can be solved by
means of dynamic programming in time linear in the number of pixels.

3.2 Application of Dual Decomposition to the Problem

To make the slave problem tractable we need to decouple the variables yik from
the variables xjl corresponding to columns. The resulting slaves would assign
sets of classes to rows or columns of the image, and terminal classes to pixels.

This decoupling is however not sufficient since feasible configurations of the
sets, encoded by vectors (yik) and (xjl), are determined by constraints (1), that
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Fig. 3. The structure of set Hl, for l = j, visualized on a tree of classes. Elements of
the set are outlined in red. Exactly one of them has to be assigned to each image row.

have a complex structure. We propose a further decomposition, that results in a
larger number of slaves with simpler constraints. The slaves assign a single class
to each pixel and each image row or column.

Each instantiation of constraints (1) can be transformed by recursively plug-
ging its left-hand side to a left-hand side of another equation of type (1) until
the resulting sum equals one. Consequently, we get

∀l ∈ L \ T
∑
k∈Hl

yik = 1 , ∀k ∈ K \ T
∑
l∈Vk

xjl = 1 , (8)

where Vk = Ch(k)∪ [L∩ (Ch(Ak) \Ak)], Ak = Anc(k) and Ch(Ak) is the set of
all children of all elements of Ak. Informally, Vk is the smallest set containing all
children of k and such that if l belongs to Vk, then all siblings of its grandparent
do as well. The structure of Vk is illustrated in figure 3. Hk is defined similarly.
Note that (8) can be transformed back to (1). It is enough to subtract from
constraint (8) for some l ∈ L\T a constraint of the same type for l′ = Pa(Pa(l))
to get a constraint of type (1). The reader can verify that on the example from
figure 3. Thus, constraints (8) are equivalent to their original form (1).

The advantage of constraint (8) is that it is an intersection of simplex con-
straints, which entails that the problem can be naturally decomposed into a
number of subproblems, one for each l ∈ L \ T and each k ∈ K \ T .

3.3 Structure of Slave Subproblem

We create one slave for each l ∈ L \ T and one for each k ∈ K \ T . Below we
present the structure of a slave subproblem for some l. The slaves for k are created
symmetrically. We denote by SHl the set of pairs of sibling row classes k, k′ such
that k, k′ ∈ Hl. Copies of variables that appear in many slaves are denoted with
a superscript l. By nkk′ we denote the number of times the pair k, k′ appears
in different slaves. The cost coefficients of a slave: c̃ijt =

cijt(
|L\T |+|K\T |

) and

c̃kk′ = ckk′
nkk′

, sum to the costs of the original objective. The slave objective is

min
zlijt,y

l
ik,y

l
kk′

∑
(i,j)∈I
t∈T

(c̃ijt + λlijt)z
l
ijt +

∑
i∈I
k∈Hl

λliky
l
ik +

∑
i∈{1,...,h−1}
k,k′∈SH l

c̃kk′y
l
ikk′ , (9)
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where λlijt is a Lagrange multiplier corresponding to a constraint coupling the

variables zlijt for different slaves and λlik is a Lagrange multiplier coupling ylik for
different slaves. The derivation of the slave objective from the original objective
(7) is straightforward and is omitted here but detailed in the supplementary
material. The feasible set of each slave problem is a projection of the original
feasible set, defined by constraints (4) to (6), to the space of the slave variables:

∀(i, j) ∈ I, ∀t ∈ T , zlijt ≥ 0 , ∀(i, j) ∈ I,
∑
t∈T

zlijt = 1 , (10a)

∀i ∈ I, ∀k ∈ Hl, y
l
ik ≥ 0 , ∀i ∈ I,

∑
k∈Hl

ylik = 1 , (10b)

∀(i, j) ∈ I, ∀k ∈ Hl

∑
t∈Desc(k)

zlijt ≤ ylik , (10c)

∀i ∈ J \ {h}, ∀k ∈ Hl,
∑

k′∈Sibl(k)

ylikk′ = ylik , (10d)

∀i ∈ J \ {h}, ∀k′ ∈ Hl,
∑

k∈Sibl(k′)

ylikk′ = yli+1k′ , (10e)

where Sibl(k) denotes the set of sibling of class k that belong to the set Hl. The
nonnegativity constraints (10a) and (10b) are introduced due to the relaxation
of the variables from binary to continuous domain. Constraints (10c) to (10e)
have the same form as the corresponding constraints (4) to (6) in the original
problem. The constraint (10b) represents constraints (1) of the original problem,
transformed according to (8). Summarizing, an intersection of the feasible sets
of the slaves is equivalent to the feasible set of the original problem, in the sense
that if for all i, j, k, l, t we have zijt = zkijt = zlijt and yik = ylik, xjl = xkjl, then

(z, y, x) ∈ C ⇐⇒ ∀l ∈ L \ T , (zl, yl) ∈ Cl ∧ ∀k ∈ K \ T , (zk, xk) ∈ Ck, where
C, Ck and Cl denote the feasible sets of the original problem and of the slaves,
respectively.

3.4 Solving the Slave Subproblem

It can be proven that the feasible set of the slave problem has integral vertices.
A proof can be found in the appendix. In consequence, each slave can be seen as
a labelling problem where we assign a label k ∈ Hl to each row i and a label t
to each pixel (i, j) ∈ I. We find the optimal labelling by dynamic programming.

Given row-class k assigned to row i by slave l, it is easy to determine for each
pixel in the row the optimal class tlkij . Constraint (10c) restricts the set of classes
that can be used in a row labelled k to descendants of k or to ones that do not
descend from any k ∈ Hl. We denote the latter set by T̃l = T \

⋃
k∈Hl

Desc(k).
The class assigned by the slave to pixel (i, j) is

tlkij = arg mint∈Desc(k)∪T̃l
(c̃ijt + λlijt) . (11)
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Algorithm 2 Dynamic program solving the slave subproblem.

for all k ∈ Hl, i ∈ I do . dyn. prog. on tij
for all j ∈ J do

tlkij ← arg mint∈Desc(k)∪T̃l
(c̃ijt + λl

ijt)
end for
clik ←

∑
j(c̃ijtlkij

+ λl
ijtlkij

) + λl
ik

end for
for all k ∈ Hl do . dyn. prog. on ki

φl(1, k)← cl1k
end for
for i = 2, . . . , h do

for k ∈ Hl do
φl(i, k)← mink′∈Hl

φl(i− 1, k′) + clik + c̃k′k

kl(i− 1, k)← arg mink′∈Hl
φl(i− 1, k′) + clik + c̃k′k . store opt. prev. class

end for
end for
ki, tij ← Backtrack(φl, kl) . extract optimal ki and tij from recorded info

From objective (9) we derive the optimal cost of assigning row class k to image
row i, which is the sum of costs for each pixel and the per-row cost

clik =

w∑
j=1

(c̃ijtlkij + λlijtlkij
) + λlik . (12)

The optimal cost of assigning classes for the i first rows, denoted φl(i, k), where
k is the row class assigned to row i, can be recursively defined as

φl(i, k) =

{
cl1k if i = 1

mink′∈Hl
φl(i− 1, k′) + clik + c̃k′k otherwise.

(13)

We use the recursive structure of the subproblem to formulate algorithm 2
for finding its optimal solution. First, for each row and each candidate row
label k ∈ Hl, optimal pixel classes tlkij are determined for each pixel in the row

according to (11). They are then used for determining costs clik of assigning
classes k ∈ Hl to image rows according to (12). Finally we run the Viterbi
algorithm according to (13) to retrieve the optimal labelling of all rows.

4 Experiments

We tested the performance of our algorithm on two datasets. For each of them,
we created a shape prior consisting of a tree hierarchy of classes and a table
of pairwise potentials for each nonterminal node. We used binary potentials to
penalize invalid pairs of neighboring classes, like sky under wall, with infinite
cost. For each image, we run the DD algorithm for 100 iterations, with a fixed
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Table 3. Performance on the ECP dataset. The rows corresponding to classes present
class accuracy (the diagonal entries of confusion matrices, or recall). The bottom rows
contain average class accuracy and total pixel accuracy. Starting from left, we present
the performance of three layers of Martinovic’s solution [15], and the results of Cohen
et al. [16], using ‘raw’ per-pixel energies, and with SVM scores on top of the energies.

[15]-L1 [15]-L2 [15]-L3 [16] [16]-SVM Ours Our confusion matrix

roof 70 73 74 93 90 91 91 0 0 2 2 0 5 roof
shop 79 86 93 96 94 95 0 95 0 0 0 0 4 shop
balcony 74 71 70 92 91 90 1 0 90 0 4 0 5 balc.
sky 91 91 97 96 97 96 4 0 0 96 0 0 0 sky
window 62 69 75 87 85 85 3 1 4 0 85 0 5 wind.
door 43 60 67 82 79 74 0 22 0 0 0 74 4 door
wall 92 93 88 88 90 91 1 3 2 0 3 0 91 wall

class aver. 73.0 77.6 80.6 90.6 89.4 88.8
pixel accur. 82.6 85.1 84.2 90.3 90.8 90.8

sequence of decaying step size αn = a/
√
n, where n is iteration number and a is

a constant. The average running time was about 4 minutes per image.

The ECP dataset [2] consists of about 100 rectified images of Haussmannian
building facades with annotations of 7 classes: sky, roof, wall, window, balcony,
shop and door. The ground-truth annotations are consistent with the grammar
used in [2], which models facade structure as a grid of windows with balconies
constrained to individual windows or extending over the width of the facade.
In consequence the ground truth is incorrect on a number of images. We use
the annotations provided by [15], which do not respect semantic constraints
(balconies and windows can be misaligned, small pieces of doors may float above
the ground), but are more accurate in terms of pixel classification.

The Graz50 dataset [3] is composed of 50 rectified images of facades of dif-
ferent architectural styles. They feature more structural variation than the ones
of the ECP dataset. The labels include four classes: sky, wall, window and door.

Performance on the ECP Dataset has been tested using per-pixel energies that
follow the description from [16]. We use a multi-feature extension of Texton-
Boost, implemented by the authors of [20]. We use SIFT and Color SIFT, Local
Binary Patterns and location features. Features of each type are clustered using
K-means into 512 clusters. The final feature vector is a concatenation of his-
tograms of appearance of cluster members in a neighborhood of 200 randomly
sampled rectangles. The per-pixel costs cijt are output by a multi-class boosting
classifier [21]. We follow the protocol of [15] and [16] in performing experiments
on five folds with 80 training and 20 testing images. The results are presented
in table 3. Our method attains the same performance as [16]. However, our al-
gorithm can accept a user-defined shape prior as input, which makes it more
general. The shape prior can express constraints on alignment of architectural
elements in two dimensions, which is beyond the expressive power of [16].
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Table 4. Results of the experiment on the Graz50 dataset. The second and third
columns of the table show diagonal entries of the confusion matrices for results reported
by Riemenschneider et al. [3] and our results. The right-hand side of the table contains
the confusion matrix for our results. Example result is shown on the right hand side.

[3] Ours conf. mat.
sky 91 93 93 0 0 6 sky
window 60 82 0 82 0 17 window
door 41 50 0 14 50 36 door
wall 84 96 0 3 0 96 wall

class average 69.0 80.3
total pixel accur. 78.0 91.8

Performance on the Graz50 dataset has been tested using the same type of pixel
costs as for the ECP dataset. Five folds were used, each time the dataset was
split into 40 training and 10 test images. The results are presented in table 4.
One reason why our results are superior to those in [3] is that their method
requires severe subsampling of the image to be tractable. Our method is more
computationally efficient and can be run on full-resolution images.

5 Conclusion and Future Work

We presented a novel approach to shape prior-based facade analysis in which the
task of parsing is formulated as a binary linear program. Our formulation does
not suffer from the curse of procedural exploration, that is typical for existing
split grammar parsers. It enables approximating globally optimal segmentations
by means of efficient optimization algorithms. We established a new state-of-the-
art level of performance on the ECP and Graz50 facade datasets.

As a direct extension of this work, we are considering learning the pairwise
potentials using the approach presented in [22]. In longer perspective, due to in-
creasingly good results reported recently on rectified images, we see the relevance
of addressing difficulties arising from the use of real life images, like modeling
projection of three-dimensional geometry of buildings on the image plane and
handling occlusions (e.g., by cars, vegetation, pedestrians or other buildings).
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